Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.
نویسندگان
چکیده
The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression.
منابع مشابه
بررسی پلیمورفیسم ژنی ایزوآنزیمهای GSTM1 و GSTP1 و فعالیت آنزیم گلوتاتیون S-ترانسفراز: مردان نابارور ایرانی
Background: Pi-GST and Mu-GST are subclasses of glutathione S-transferase that present on human sperm surface and play an important role against oxidative stress. Therefore, any defects in the enzyme activity may be associated with male infertility.In this study the polymorphisms of GSTM1 and GSTP1 in association with enzyme activity and sperm parameters were studied. Methods: This case-contro...
متن کاملRegulation of glycolipid synthesis in HL-60 cells by antisense oligodeoxynucleotides to glycosyltransferase sequences: effect on cellular differentiation.
Treatment of the human promyelocytic leukemia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine:beta-1,4-N-acetylgalactosaminyl-transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:alpha-2,8-sialyltransferase (GD3-synthase; EC 2.4.99.8) sequences effectively down-regulated the synthesis of more complex gangliosides in the ganglioside synthetic pathways aft...
متن کاملGenetic Polymorphism of the Glutathione S-Transferase M1 and Development of Breast Cancer
Glutathione S-transferases (GSTs) are encoded by a superfamily of genes and play a role in the detoxification of potential carcinogens. The human GSTs are divided into four classes: alpha, mu, pi and theta. Previous studies indicated that the absence of the Glutathione S-Transferase M1 (GSTM1) protein correlated with an increased risk of developing some types of cancers. Association between spe...
متن کاملProtection of cells from oxidative stress by microsomal glutathione transferase 1.
Rat liver microsomal glutathione transferase 1 (MGST1) is a membrane-bound enzyme that displays both glutathione transferase and glutathione peroxidase activities. We hypothesized that physiologically relevant levels of MGST1 is able to protect cells from oxidative damage by lowering intracellular hydroperoxide levels. Such a role of MGST1 was studied in human MCF7 cell line transfected with ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 8 12 شماره
صفحات -
تاریخ انتشار 2002